www.avtopremial.ru

Лекции по электротехнике Примеры решения курсового задания

Полупроводниковые диоды В пограничном слое двух полупроводников с различным характером электропроводности при одном направлении тока дырки и электроны движутся навстречу друг другу, и при их встрече происходит рекомбинация. В цепи, таким образом, протекает ток

Тиристоры представляют собой кристаллическую структуру из четырех слоев чередующихся электронной и дырочной проводимостей  

Биполярные транзисторы Транзисторы являются управляемыми полупроводниковыми приборами, обеспечивающими усиление сигналов. По принципам действия их делят на управляемые электрическим током (биполярные) и управляемые электрическим полем (полевые).

Интегральные микросхемы Постоянное усложнение схем электронных устройств привело к существенному увеличению количества входящих в них элементов. В связи с этим возникает проблема все большей миниатюризации электронных приборов. Это стало возможным только на базе современного научно-технического направления электроники – микроэлектроники, основным принципом которой является объединение в одном сложном микроэлементе многих простейших – диодов, транзисторов, резисторов, конденсаторов и др

Электронно-оптические приборы Индикаторные приборы служат для преобразования электрических сигналов в визуально воспринимаемую информацию. В зависимости от назначения индикаторные приборы могут иметь разную степень сложности и базироваться на различных физических принципах. В настоящее время для отображения знаковой информации наибольшее распространение получили электронно-лучевые, вакуумно-люминесцентные, газоразрядные, полупроводниковые и жидкокристаллические индикаторы.

Полупроводниковые индикаторы Принцип действия полупроводникового индикатора основан на излучении квантов света при рекомбинации носителей заряда в области р-n – перехода, к которому приложено прямое напряжение. К полупроводниковым индикаторам относится светодиод – полупроводниковый диод, в котором предусмотрена возможность вывода светового излучения из области р-n – перехода сквозь прозрачное окно в корпусе. Цвет определяется материалом, из которого выполнен светодиод. Выпускают светодиоды красного, желтого и зеленого свечения.

Волоконно-оптический прибор – это диэлектрический волновод, по которому энергия передается в виде электромагнитных волн оптического диапазона (f ≈ 1014 Гц). Если энергия передается в форме видимого излучения, то такой волновод называется световодом

Усилители на микросхемах В настоящее время многокаскадные усилители переменного тока с RC-связью выполняют на основе интегральных микросхем. Они состоят, как правило, из нескольких (не менее двух) каскадов. Полоса пропускания частот таких усилителей находится в пределах от 200 Гц до 100 кГц.

Генераторы синусоидальных колебаний Любой генератор состоит из усилителя и цепи положительной обратной связи.

Электронные коммутирующие элементы и устройства Электронные ключи Для выполнения различных коммутаций в устройствах автоматики и вычислительной техники, включения и выключения элементов, источников питания используют электронные ключи.

Коммутационные схемы В сложных устройствах автоматического управления процессами для контроля большого числа параметров и различных переключений наряду с электронными ключами используют более сложные устройства, называемые коммутационными схемами. Примером такой схемы является интегральная схема управления впрыском топлива и зажигания двигателей внутреннего сгорания автомобилей (СУВЗ).

Логический элемент – это электронная схема, которая имеет один или больше входов X, реализующая на каждом выходе соответствующую логическую функцию Y от входных переменных. Логические элементы являются важнейшей составной частью устройств цифровой (дискретной) обработки информации – цифровых измерительных приборов, устройств автоматики и ЭВМ. Логические элементы, как правило, выполняют на базе электронных устройств, работающих в ключевом режиме. В связи с этим цифровая информация представляется в виде логической переменной, принимающей всего два различных значения: логическая 1 – истинно и логический 0 – ложно.

Аналого-цифровые и цифро-аналоговые преобразователи При использовании логических и цифровых устройств в системах автоматизированного управления возникает проблема связи их с различными электронными преобразователями входных сигналов и исполнительными механизмами, у которых в большинстве случаев информация представлена в аналоговой форме в виде различных уровней напряжения и тока

Микропроцессор (МП) – программируемое электронное устройство, которое предназначено для обработки информации, представленной в цифровом коде, и управления процессом этой обработки. Микропроцессоры изготовляют по интегральной технологии. Они представляют собой одну или несколько БИС

Электронные усилители и генераторы

Электронные усилители

Транзисторные усилители

Назначением усилителя как электронного устройства является увеличение мощности сигнала за счет энергии источника питания.

В зависимости от формы электрических сигналов усилители разделяют на: усилители непрерывных сигналов, называемые усилителями постоянного тока; усилители сигналов с гармоническим несущим процессом, которые называют усилителями переменного тока; усилители импульсных сигналов – импульсные усилители. Из усилителей переменного тока выделяют узкополосные, или избирательные, усиливающие только одну гармоническую составляющую из ряда гармоник несинусоидального периодического тока. Импульсные усилители являются широкополосными.

В электронных устройствах применяют также усилители, преобразующие изменения амплитуды или фазы гармонического тока в соответствующие изменения значения и знака постоянного тока (напряжения). Называют их усилителями среднего значения тока.

В соответствии с назначением коэффициентом преобразования усилителя является коэффициент усиления мощности

,  (14.1)

где ,  – мощность выходного и входного сигналов соответственно.

Однако в зависимости от режимов работы выходной и входной цепей усилителя практическое значение может иметь не усиление мощности сигнала, а повышение его уровня по напряжению или по току. Поэтому на практике различают усилители мощности, усилители напряжения и усилители тока. Соответственно в качестве коэффициентов преобразования используются коэффициенты усиления напряжения и тока

. (14.2)

Очевидно, что .

Режим работы усилителя определяется соотношениями входного , выходного  сопротивлений и сопротивлений источника сигнала  и нагрузки . Для усилителя напряжения характерны соотношения: , , которые дают режим, близкий к режиму холостого хода на выходе. Источником сигнала является источник напряжения. Для усилителя тока соотношения ,  дают режим, близкий к короткому замыканию на выходе. Источником сигнала служит источник тока.

Однако рассмотренные идеальные режимы усиления напряжения или тока на практике встречаются редко. Транзисторные усилители большей частью работают как усилители мощности в режиме согласованной нагрузки источника сигнала, а иногда и согласованной нагрузки усилителя, т.е. при  и .

Простейший усилитель принято называть усилительным каскадом. При недостаточном усилении сигнала одним каскадом усилитель выполняется из нескольких каскадов. Усилители электронных устройств, как правило, состоят из двух или трех каскадов, которые называются входным, выходным и промежуточным каскадами.

Общим требованием к усилителям электронных устройств является как можно меньшее искажающее воздействие на сигналы. Необходимые информационные характеристики и параметры усилителей обеспечиваются при достаточно высокой стабильности коэффициентов усиления, практически линейной проходной характеристике, ограниченных линейных искажениях (сдвигах фаз гармонических составляющих сигналов) и малой инерционностью. Перечисленные свойства усилителей достигаются главным образом за счет обратных связей. Поэтому практически все усилители электронных устройств выполняются с обратными связями. Особое место занимают усилители с глубокой положительной, обеспечивающей релейный или автоколебательный режим их работы, и отрицательной  обратной связью – операционные усилители.

Усилительный каскад может быть выполнен на основе любой из трех схем включения транзистора. Однако преимущественно используются усилительные каскады по схеме включения с общим эмиттером (ОЭ) биполярного и схеме с общим истоком (ОИ) полевого транзисторов, как обеспечивающие наибольшее усиление (рис. 14.1 а, б).

Режим работы транзистора в усилительном каскаде отличается от режима работы в схеме включения транзистора, так как его выходные зажимы размыкаются и к ним подключается нагрузка с сопротивлением , а к входным зажимам подключается источник сигнала с сопротивлением  и ЭДС . При = 0 транзистор находится в некотором исходном режиме, задаваемом источником питания  и источником смещения .

Резистор  уменьшает коэффициент усиления по току биполярного транзистора и крутизну характеристики полевого транзистора, поскольку их выходные сопротивления конечны.

Внутренняя положительная обратная связь в схеме включения биполярного транзистора с ОЭ, увеличивая коэффициент усиления мощности каскадом, одновременно увеличивает нестабильность коэффициента усиления. Поэтому усилительные каскады на основе схемы с ОЭ биполярного и с ОИ полевого транзисторов всегда выполняются с внешними (специально введенными) отрицательными обратными связями   (рис. 14.2 а, б).

В усилителях переменного тока частота несущего процесса, как правило, равна промышленной (50 Гц) или кратна ей. Наибольшие частоты не выходят за пределы звукового диапазона, наименьшая может составлять 25…30 Гц.

В усилителях переменного тока возможно гальваническое разделение цепей усиливаемого сигнала и цепей постоянного тока, задающих исходный режим транзистора, что является важной их особенностью. Разделение достигается путем использования реактивных сопротивлений – кондесаторов или трансформаторов для связи транзистора с источником сигнала и нагрузкой. Соответственно различают усилители переменного тока с конденсаторными (RC-связями) и трансформаторными связями.

Достоинствами конденсаторных усилительных каскадов являются их относительная простота и технологичность изготовления. Однако их параметры, прежде всего коэффициент усиления мощности, хуже параметров трансформаторных каскадов. Достоинством последних является свойство обеспечения возможно большего приближения к оптимальному режиму усиления мощности вплоть до согласования транзистора с источником сигнала и нагрузкой. Однако в связи с низкими значениями напряжений, применяемых для питания транзисторов, согласование возможно только в усилителях слабых сигналов. Такие усилители выполняют, как правило, с конденсаторными связями. С трансформаторными связями выполняют усилители больших сигналов, особенно выходные каскады (на биполярных транзисторах).

Часто, особенно в электронных устройствах с преобразователями неэлектрических величин, необходимо усиление сигналов очень низких частот (). В этом случае используют усилительные каскады постоянного тока, имеющие амплитудно-частотную характеристику, равномерную в диапазоне от  до . Так как использование конденсаторов и трансформаторов в усилителях постоянного тока невозможно, для связи между каскадами используют только резисторы.

Из числа схем усилителей постоянного тока наибольший интерес представляет параллельно-баланс–ная или дифференциальная схема (рис. 14.3). В ней использован принцип четырехплечего моста. Однако в такой схеме предъявляются особые требования к идентичности характеристик транзисторов и других элементов. Такие усилители могут выполняться как на биполярных, так и на полевых транзисторах. В дискретных устройствах (например, ЭВМ) их используют для выполнения арифметических операций.


На главную