Элементы квантовой физики атомов и молекул О периодической системе элементов Д.И. Менделеева Электропроводность полупроводников Сверхпроводимость


Физика Примеры решения задач и конспект лекций

Квантование магнитного потока Существование спаривания электронов в сверхпроводнике (при Т < Тк) было доказано прямыми опытами по квантованию магнитного потока. Рассмотрим сверхпроводящее кольцо, по которому циркулирует сверхпроводящий ток. Пусть электроны движутся по окружности радиуса r со скоростью

Физика атомного ядра и элементарных частиц Атомное ядро Состав и основные характеристики атомного ядра Атомные ядра различных элементов состоят из двух частиц – протонов и нейтронов. Сразу же после открытия нейтрона  (Дж. Чедвик, 1932 г.), Д.Д. Иваненко и В. Гейзенберг выдвинули гипотезу о протонно-нейтронном строении атомных ядер, которая полностью подтвердилась последующими исследованиями. Протоны и нейтроны принято называть нуклонами.

Масса и энергия связи ядра Измерения показывают, что масса любого ядра mя всегда меньше суммы масс входящих в его состав протонов и нейтронов: mя < Zmp + Nmn. Это обусловлено тем, что при объединении нуклонов в ядро выделяется энергия связи нуклонов друг с другом.

Ядерные силы Основные свойства ядерных сил Силы, удерживающие нуклоны в ядре, называются ядерными. Они представляют собой проявление самого интенсивного из всех известных в физике видов взаимодействия – так называемого сильного взаимодействия. Ядерные силы притяжения между нуклонами в сотни раз превосходят электромагнитные силы отталкивания. Перечислим отличительные особенности этих сил.

Модели ядер В теории атомного ядра важную роль играют модели, достаточно хорошо описывающие определенную совокупность ядерных свойств и допускающие сравнительно простую математическую трактовку. При этом каждая модель обладает, естественно, ограниченными возможностями и не претендует на полное описание ядра. Ограничимся кратким рассмотрением двух моделей ядра: капельной и оболочечной. Капельная модель. В ней атомное ядро рассматривается как капля заряженной несжимаемой жидкости с очень высокой плотностью (~1014 г/см3). Капельная модель позволила вывести полуэмпирическую формулу для энергии связи ядра и помогла объяснить ряд других явлений, в частности процесс деления тяжелых ядер.

Основные типы радиоактивности Альфа-распад. Альфа-лучи представляют собой поток ядер гелия .

Эффект Мёссбауэра Пусть имеются два одинаковых первоначально покоящихся ядра, одно из которых находится в основном состоянии, другое — в возбужденном с энергией возбуждения Е*. Переходя в основное состояние, возбужденное ядро испускает γ-квант с энергией ħω и импульсом ħω / с, удовлетворяющим законам сохранения

Выход ядерной реакции В ядерной физике вероятность взаимодействия принято характеризовать с помощью эффективного сечения σ. Наглядно σ интерпретируется как площадь сечения ядра X, попадая в которую налетающая частица вызывает реакцию.

Энергия реакции Принято говорить, что ядерные реакции могут происходить как с выделением, так и с поглощением энергии. Это надо понимать так. Пусть Е0 и Е'0 — суммы энергий покоя исходных частиц и продуктов реакции.

Деление ядер Реакция деления ядра Реакция деления ядра происходит при облучении тяжелого ядра нейтронами, при этом ядро делится на несколько более легких ядер (осколков), чаще всего на два ядра, близких по массе. Деление тяжелых ядер может быть вызвано не только нейтронами, но и протонами, дейтронами, α-частицами, а также γ-фотонами

Цепная ядерная реакция При делении ядра урана-235, которое вызвано столкновением с нейтроном, освобождается 2 или 3 нейтрона. При благоприятных условиях эти нейтроны могут попасть в другие ядра урана и вызвать их деление. На этом этапе появятся уже от 4 до 9 нейтронов, способных вызвать новые распады ядер урана и т. д. Такой лавинообразный процесс называется цепной реакцией.

Устройство, в котором поддерживается управляемая реакция деления ядер, называется ядерным (или атомным) реактором. Схема ядерного реактора на медленных нейтронах

Элементарные частицы Виды взаимодействий элементарных частиц В настоящее время элементарными частицами называют большую группу мельчайших частиц материи, которые не являются атомами или атомными ядрами (за исключением протона — ядра атома водорода) и которые при взаимодействии ведут себя как единое целое. Характерным свойством всех элементарных частиц является их способность к взаимным превращениям (рождению и уничтожению) при взаимодействии с другими частицами.

Систематика элементарных частиц В настоящее время элементарные частицы делятся на большие классы и подклассы в зависимости от типов фундаментальных взаимодействий, в которых эти частицы участвуют. Элементарные частицы объединены в три группы: фотоны, лептоны и адроны. Естественно, что отнесенные к каждой из этих групп элементарные частицы обладают общими свойствами и характеристиками, которые отличают их от частиц другой группы.

Законы сохранения В физике элементарных частиц не существует законченной теории, тогда как законы сохранения хорошо соблюдаются. Многие законы сохранения для элементарных частиц уже установлены из опыта, а соответствующие фундаментальные законы их поведения еще неизвестны. Поэтому законы сохранения играют здесь главенствующую роль и позволяют анализировать процессы, механизм которых еще не раскрыт.

Кварки Обилие открытых и вновь открываемых адронов навела Гелл-Мана и Цвейга (1964 г.) на мысль, что все они построены из каких-то других более фундаментальных частиц. Ими  была выдвинута гипотеза, подтвержденная последующими исследованиями, что все тяжелые фундаментальные частицы – адроны – построены из более фундаментальных частиц, названных кварками. На основе кварковой гипотезы не только была понята структура уже известных адронов, но и предсказано существование новых.

Стандартная теория Электрослабые взаимодействия. Вайнберг, Глэшоу и Салам (70-ые годы XX столетия) создали единую теорию электрослабых (т. е. электромагнитных и слабых) взаимодействий. Из этой теории вытекает, что переносчиком слабых взаимодействий является группа частиц, получивших название промежуточных векторных бозонов. В эту группу входят две заряженные частицы (W+ и W-) и одна нейтральная (Z0) (W — первая буква английского слова weak — слабый). Таким образом, слабые взаимодействия подобны электромагнитным, переносчиками которых также являются векторные бозоны — фотоны. Векторными называются частицы со спином, равным единице (и отрицательной четностью).

Сверхпроводимость

Камерлинг-Оннес обнаружил в 1911 г., что при температуре около 4 К электрическое сопротивление ртути скачком уменьшалось до нуля. Дальнейшие исследования показали, что аналогично ведут себя и многие другие металлы и сплавы. Это явление назвали сверхпроводимостью, а вещества, где оно наблюдается, - сверхпроводниками. Температура Тк, при которой происходит скачкообразное уменьшение сопротивления, называется температурой перехода в сверхпроводящее состояние или критической температурой. Состояние сверхпроводника выше критической температуры называется нормальным, а ниже — сверхпроводящим.

Бозе-конденсация и сверхтекучесть в электронной подсистеме металла

Теория сверхпроводимости была создана в 1957 г. Бардином, Купером, и Шриффером. Ее называют кратко теорией БКШ. Независимо от них в 1958 г. Н.Н. Боголюбов разработал более совершенный вариант теории сверхпроводимости. Теория сверхпроводимости сложна. Поэтому ниже ограничимся лишь упрощенным изложением теории БКШ.

Помимо внешнего сходcтвa между сверхтекучестью (сверхтекучая жидкость протекает без трения, т.е. без сопротивления течению, по узким капиллярам) и сверхпроводимостью (ток в сверхпроводнике течет без сопротивления по проводу) существует глубокая физическая аналогия: и сверхтекучесть, и сверхпроводимость — это макроскопический квантовый эффект.

Электроны в металле, кроме кулоновского отталкивания, испытывают особый вид взаимного притяжения, которое в сверхпроводящем состоянии преобладает над отталкиванием. В результате электроны проводимости объединяются в так называемые куперовские пары. Электроны, входящие в такую пару, имеют противоположно направленные спины. Поэтому спин пары равен нулю, и она представляет собой бозон. Бозоны склонны накапливаться в основном энергетическом состоянии, из которого их сравнительно трудно перевести в возбужденное состояние. Иначе говоря, при температуре ниже критической (Тк) происходит бозе-конденсация куперовских пар электронов. Куперовские пары бозе-конденсата, придя в сверхтекучее движение, остаются в этом состоянии неограниченно долго. Такое согласованное движение пар и есть ток сверхпроводимости.

Поясним сказанное более подробно. Электрон, движущийся в металле, деформирует (поляризует) состоящую из положительных ионов кристаллическую решетку. В результате этой деформации электрон оказывается окруженным «облаком» положительного заряда, перемещающимся по решетке вместе с электроном. Электрон и окружающее его облако представляют собой положительно заряженную систему, к которой будет притягиваться другой электрон. Таким образом, кристаллическая решетка играет роль промежуточной среды, наличие которой при­водит к притяжению между электронами.

На квантовомеханическом языке притяжение между электронами объясняется как результат обмена между электронами квантами возбуждения решетки — фононами. Электрон, движущийся в металле, нарушает режим колебаний решетки — возбуждает фононы. Энергия возбуждения передается другому электрону, который поглощает фонон. В результате такого обмена фононами возникает дополнительное взаимодействие между электронами, которое имеет характер притяжения. При низких температурах это притяжение у веществ, являющихся сверхпроводниками, превышает кулоновское отталкивание.

Взаимодействие, обусловленное обменом фононами, наиболее сильно проявляется у электронов, обладающих противоположными импульсами и спинами. В результате два таких электрона объединяются в куперовскую пару. Эту пару не следует представлять себе как два слипшихся электрона. Напротив, расстояние между электронами пары весьма велико, оно составляет примерно 10-4 см, т. е. на четыре порядка превышает межатомные расстояния в кристалле (например, свинец в сверхпроводящем состоянии Тк ≈ 7,2 К). Примерно 106 куперовских пар заметно перекрываются, т. е. занимают общий объем.

В куперовские пары объединяются не все электроны проводимости. При температуре Т, отличной от абсолютного нуля, имеется некоторая вероятность того, что пара будет разрушена. Поэтому всегда наряду с парами имеются «нормальные» электроны, движущиеся по кристаллу обычным образом. Чем ближе Т к Тк, тем доля нормальных электронов становится больше, обращаясь в единицу при Т = Тк. Следовательно, при температуре выше Тк сверхпроводящее состояние невозможно.

Образование куперовских пар приводит к перестройке энергетического спектра металла. Для возбуждения электронной системы, находящейся в сверхпроводящем состоянии, надо разрушить хотя бы одну пару, на что требуется энергия, равная энергии связи Есв электронов в паре. Эта энергия представляет собой минимальное количество энергии, которое может воспринять система электронов сверхпроводника. Следовательно, в энергетическом спектре электронов, находящихся в сверхпроводящем состоянии, имеется щель ширины Есв, расположенная в области уровня Ферми.

Итак, возбужденное состояние электронной системы, находящейся в сверхпроводящем состоянии, отделено от основного состояния энергетической щелью ширины Есв. Поэтому квантовые переходы этой системы не всегда будут возможными. При малых скоростях своего движения (отвечающих силе тока, меньшей критической Iк) электронная система не будет возбуждаться, а это и означает движение без трения (сверхтекучесть), т. е. без электрического сопротивления.

Ширина энергетической щели Есв с ростом температуры уменьшается и обращается в нуль при критической температуре Тк. Соответственно все куперовские пары разрушаются, и вещество переходит в нормальное (несверхпроводящее) состояние.


На главную