Энергетика
Физика
Электротехника
Курсовой
Реакторы
Математика
Лабораторные
Дизайн

Информатика

Задачи
Сопромат
Термех
Геометрия
Конспекты
Графика
На главную

Элементы квантовой физики атомов и молекул

Атом водорода. Квантование

Собственные значения энергии. Рассмотрим систему, состоящую из электрона е, который движется в кулоновском поле неподвижного ядра с зарядом Ze (водородоподобная система). Потенциальная энергия взаимодействия электрона с ядром в такой системе равна

(13.1)

где r — расстояние между электроном и ядром, которое в первом приближении будем считать точечным. Графически функция U(r) изображена жирной кривой на рис. 13.1 а. U(r) с уменьшением r (при приближении электрона к ядру) неограниченно убывает. Уравнение Шрёдингера в этом случае имеет вид

(13.2)

Поле (13.1), в котором движется электрон, является центрально-симметричным, т. е. зависит только от r. Поэтому решение уравнения (13.2) наиболее целесообразно проводить в сферической системе координат r,θ,φ,  где оператор Лапласа имеет следующий вид:

(13.3)

Не будем воспроизводить здесь этапы решения уравнения (13.2), поскольку оно слишком громоздко. Остановимся лишь на сути процесса решения и на анализе окончательных результатов. Решение уравнения (13.2) проводят методом разделения переменных с учетом естественных требований, налагаемых на ψ-функцию: она должна быть однозначной, конечной, непрерывной и гладкой. В теории дифференциальных уравнений доказывается, что решения уравнения (13.2) являются непрерывными, однозначными и конечными в следующих случаях:

при любых положительных непрерывных значениях энергии;

при дискретных отрицательных значениях энергии.

Первый случай соответствует свободному электрону (заштрихованная область на рис. 13.1 б), второй — получаемым из уравнения Шредингера собственным значениям энергии

 n = 1, 2, 3, …

(13.4)

Случай (Е < 0) соответствует связанным состояниям электрона в атоме.

Решение уравнения Шредингера приводит в случае Е < 0 к формуле (13.4) для энергетических уровней без использования каких-либо дополнительных постулатов (в отличие от первоначальной теории Бора). Кроме того, совпадение с формулой Бора означает, что мы пришли к той же самой системе энергетических уровней, как в теории Бора. Это же относится и к частотам излучения при переходах между уровнями.

Таким образом, решение уравнения Шредингера приводит для атома водорода к появлению дискретных энергетических уровней Е1, Е2, ..., Еп, показанных на рис. 13.1 б в виде горизонтальных прямых.

 а) б)

Рис. 13.1 . а - потенциальная энергия U(r) и б - собственные значения энергии Е электрона в атоме водорода.

Самый нижний уровень Е1, отвечающий минимальной возможной энергии, — основной, все остальные (Еп > Е1 , п = 2, 3, ...) — возбужденные. При Е < 0 движение электрона является связанным — он находится внутри гиперболической потенциальной ямы. Из рисунка следует, что по мере роста главного квантового числа п энергетические уровни располагаются теснее и при п → ∞ Е∞ → 0.

При Е > 0 движение электрона является свободным; область непрерывного спектра Е > 0 (заштрихована на рис. 13.1 б) соответствует ионизированному атому.

Различие в интерпретации с теорией Бора относится только к состояниям электрона: в теории Бора это движение по стационарным орбитам, здесь же орбиты теряют физический смысл, их место занимают ψ-функции.

Квантовые числа и кратность вырождения. Собственные функции уравнения (13.2), т. е. ψ-функции, содержат, как выяснилось, три целочисленных параметра — п, ℓ, т:

ψ = ψnℓ m(r θ,φ),

(13.5)

где п называют главным квантовым числом (это то же п, что и в выражении для Еп). Параметры же ℓ и m — это орбитальное (азимутальное) и магнитное квантовые числа, определяющие по формулам (12.58) и (12.59) модуль момента импульса М и его проекцию Мг. В процессе решения выясняется, что решения, удовлетворяющие естественным условиям, получаются лишь при значениях ℓ, не превышающих (п – 1). Таким образом, при данном п квантовое число ℓ может принимать п значений:

ℓ = 0, 1, 2, …, n – 1.

(13.6)

В свою очередь, при данном ℓ квантовое число т согласно (12.59) может принимать 2ℓ + 1 различных значений:

т = 0, ±1, ±2, ...,± ℓ

(13.7)

Энергия Еп электрона (13.4) зависит только от главного квантового числа п. Отсюда следует, что каждому собственному значению Еп (кроме случая п = 1) соответствует несколько собственных функций ψnℓ m, отличающихся значениями квантовых чисел ℓ и т. Это означает, что электрон может иметь одно и то же значение энергии, находясь в нескольких различных состояниях. Например, энергией Е2 (п = 2) обладают четыре состояния: ψ200, ψ21-1, ψ210, ψ21+1.

Состояния с одинаковой энергией называют вырожденными, а число различных состояний с определенным значением энергии Еп - кратностью вырождения данного энергетического уровня. Кратность вырождения n-го уровня водородоподобной системы можно определить, учитывая число возможных значений ℓ и т. Каждому из п значений квантового числа ℓ соответствует 2ℓ + 1 значений т. Поэтому полное число N различных состояний для данного п равно

N = = 1 + 3 + 5 + ... + (2п - 1) = п2.

(13.8)

Как будет показано в дальнейшем, это число надо удвоить из-за наличия собственного момента (спина) у электрона. Таким образом, кратность вырождения n-го энергетического уровня

N = 2п2.

(13.9)

При анализе этих экспериментов было установлено, что отклонения происходят вследствие кулоновского отталкивания от положительного заряда, сосредоточенного в очень малом объеме внутри атома. До этого уже было известно (по экспериментам с ионизацией газов), что в составе атомов вещества также имеются элементарные частицы – электроны (с малой массой и отрицательным зарядом). Для объяснения результатов рассеивания Резерфорд в 1911г. предложил планетарную модель атома. Согласно этой модели атом построен по типу Солнечной системы - в центре атома в очень малой области (10-14 м) находится положительно заряженное ядро, в котором сосредоточена почти вся масса атома, а вокруг ядра под действием сил Кулоновского притяжения двигаются по замкнутым орбитам электроны (примерный радиус орбит -10-10м). При этом суммарный заряд электронов равен по величине заряду ядра, поэтому в целом атом нейтрален

Информатика

ТОЭ